Материал 11
Планарный трансформатор: технология, расчеты, стоимость Электроника для начинающих, Схемотехника, Робототехника, Производство и разработка электроники, DIY или Сделай сам Не так давно ко мне обратилась одна компания, которой необходимо было разработать линейку LED-драйверов. Название компании и ТТХ драйверов называть не буду, NDA не подписывал, но этика есть этика. Вроде бы обычный заказ на драйвер, каких десяток за год набирается, но было два взаимоисключающих требования: стоимость и габариты. Задача с точки зрения схемотехники простая, но вот с точки зрения производства и конструирования оказалась очень интересной. И так — требовалось изготовить сетевой драйвер для LED с корректором коэффициента мощности (мощность около 100 Вт), который стоил был в пределах 3$ на серии и имел габариты по высоте не более 11 мм! Многие скажут: «А в чем проблема сделать дешманский драйвер?», вот только дешманский не прокатит, т.к. еще одно требование — возможно давать без опасений 5 лет гарантии. И вот тут начинается самое интересное. Был сделан выбор топологии, схемотехника, все влезало в габариты и стоимость, но столь замечательную картину портил «классический» трансформатор. Он огромный, он дорогой, он технологически сложный в изготовление. Оставалось решить последнюю задачу и после двух дней в раздумьях и расчетах оно было найдено — планарный трансформатор. Если вам интересно между чем и чем делался выбор, на каких аргументах он основывался и как удалось получить стоимость трансформатора меньше 0.5$, то приглашаю вас в подкат. Ну и для улучшения «аппетита» прилагаю вам фото готового трансформатора: Основные недостатки «классических» трансформаторов Я думаю не для кого не секрет как выглядит обычный трансформатор, но вдруг кто пропустил последние 150 лет промышленной революции, поэтому напомню: Так выглядит обычный трансформатор, намотанный на каркасе от сердечника RM12. Чем же он так плох? Причин тут несколько, конечно часть из них теряет актуальность в определенных задачах, но рассказ будет вестись в контексте вставшей передо мной задачей. И вот основные из них: Высота. Даже человек с плохим глазомером может примерно оценить размеры трансформатора по фотографии и сказать с уверенностью: «Он точно больше 11 мм». И действительно, высота трансформатора на RM12 составляет около 24 мм, что более чем в 2 раза превышает необходимое значение Технологичность. Когда вам нужно намотать 1-2 трансформатора, то вы берете каркас, провод и мотаете. Когда вам надо намотать 100-200 штук, то можно заказать намотку у себя в стране, цена еще не кусается. Когда вам надо намотать 10 000 штук, а потом еще 50 000, то тут возникает куча нюансов: цена, качество, выбор еще одного подрядчика в Азии. Все это увеличивает конечную стоимость продукта, когда мне надо просто супер дешево и очень качественно. Повторяемость. Намотать и собрать два одинаковых трансформатора — очень сложно, сделать 10 000 одинаковых трансформаторов — невозможно. Это я испытал на своей шкуре уже не единожды, особенно если речь идет о производстве в ЮА. А теперь представьте, что вам придется «дорабатывать напильником» эти 10 000 трансформаторов при финальной сборке. Представили? Вам стало грустно от количества трудозатрат, а значит и стоимости? Думаю стало. Себестоимость. Это вообще очень сложный пункт, но давайте посмотрим на фото выше и увидим, что для сборки классического трансформатора нам нужен каркас, сердечник, скобы, медный провод, изоляция и все это руками или на полуавтоматическом станке. Допустим все это стоит «Х долларов». Для изготовления планарного трансформатора нужен только сердечник. Думаю тут очевидно, что 1 деталь стоит явно дешевле, чем 1 такая же деталь + еще 4 компонента? В этот момент вас наверняка одолевают терзания: «Если все так плохо, то почему обычные трансформаторы настолько распространены?» Немного раньше я говорил, что часть этих минусов в определенных задач не является минусом. Например, если вы откроете UPS on-line, то увидите, что трансформатор там не самый габаритный элемент. Да и если вы собираете небольшие партии до 100-200 устройств в месяц, то наверняка и себестоимость выравняется, т.к. 100-200 штук уже можно сделать и в России или нанять намотчика, купить китайский станок или сделать самим за 100-200 тыс. руб. и радоваться жизни. И пожалуй главное место, где планарные трансформаторы не вытеснят обычные — преобразователи с номинальной мощностью больше 2000 Вт. Устройство планарного трансформатора На самой первой картинке вы видите данный тип трансформатора уже в собранном состоянии, вид весьма необычный, не правда ли? Хотя люди, которые вскрывали современные телевизоры, зарядки ноутбуков (не дешевых) уже наверняка видели такие трансформаторы или подобные. Планарные трансформаторы могут быть выполнены в разных конструктивных исполнениях, четкой классификации не существует насколько мне известно, но я делю их на 2 типа: Независимый. Трансформатор представляет из себя отдельный электронный компонент, который может отдельно поставляться и изготавливаться. Такое решение хорошо при наличии большой линейки устройств, где трансформатор унифицированный. Это не мой случай. Мне надо дешево, а унификация всегда требует жертв в виде небольшого удорожания. С общим ядром. Это как раз мой случай. При таком исполнение обмотки трансформатора выполнены на основной печатной плате устройства и является его не неотъемлемой частью. Сердечник же просто надевается на плату и крепится с помощью скоб или как-то иначе, например, на клей или компаунд. Какой бы тип планарного трансформатора не рассматривали, общее у них одно — все обмотки выполнены в виде медных дорожек на печатной плате. Если вы решите более подробно ознакомиться с данной технологией и направитесь в гугл, то наверняка во многих статьях встретите фразу: "… и вот наконец-то в последние годы планарные трансформаторы стали доступны по цене. Связано это с тем, что многослойные платы подешевели". Когда я проектировал свой первый планарный трансформатор, году так в 2010-11, данная фраза сбила меня с толку. Я наивно подумал, что планарники делают исключительно на многослойных печатных платах. На тот момент я еще учился в ВУЗе, и хотя работал и получал неплохую стипендию — данный тип плат для меня был финансово не очень доступен. Подумал и решил сделать свой фейсбук!!!! удешевить данную технологию, как оказалось потом — придумал велосипед. Суть удешевления заключалась в использовании «пирога» из нескольких двухслойных печатных плат небольшой толщины (0.8 или 1 мм). Для меня это казалось гениальным и простым решениям. Вот только проблема была в том, что я как всегда смотрел на решениях топовых компаний, занимающихся силовой электроникой, таких как Texas Instruments, Linear, Infineon, Murata, а они использовали печатные платы в 6-8 слоев и в 2010 году они даже стандартного 4 класса (0.15/0.15 мм) стоили очень дорого. Потом получилось так, что на летнюю практику меня позвали в одну хорошую компанию и там мне рассказали и показали, что они такие «пироги» для планарных трансформаторов уже лет 10 как делают. Так же делали и другие компании рангом пониже, чем TI и Infineon. Главное одно — идея была верная и такое решение не просто правильное, а еще и проверенное временем. Все элементы «пирога» обычные двухслойные платы стандартного класса точности, а значит они оооочень дешевые и изготовить их может любой производитель печатных плат. Выглядят элементы «пирога» планарного трансформатора вот так: Как видите в моем трансформаторе всего 3 элемента, хотя могло бы быть и больше. Почему 3? Согласно мои расчетам, чтобы набрать нужную индуктивность в первичной обмотке, мне потребуется 6 слоев. 2 слоя мне дает основная плата + 2 слоя «кусок пирога» + 2 слоя «кусок пирога». Вторичная обмотка уместилась всего на 2 слоя, от сюда еще один «кусок пирога». В итоге имеет стек из 4-х двухслойных печатных плат. Дальше арифметика еще проще: я использую сердечник ELP18/4/10, а значит расстояние под «обмотки» у меня составляет 4 мм. Это расстояние мы делим на количество плат: 4 мм / 4 платы = 1 мм — толщина каждой печатной платы. Все просто! Если вам вдруг не понятно откуда взялся зазор в 4 мм, то можете посмотреть даташит на сердечник тут. А для тех, кому не удобно ходить по ссылкам или трафик не хочется тратить на большую pdf-ку, небольшая вырезка: Как видим размер окна сердечника на одной половине составляет 2 мм, на второй половине он так же 2 мм. Получаем общий размер окна по высоте — 4 мм. Теперь можно разобрать из чего состоит себестоимость планарного трансформатора. По сути тут всего 2 составляющие: сердечник и 3 печатные платы. Сердечник оптом стоит 0,14$, печатные платы 3 штуки по 0,11$ за каждую так же на серии. Получаем 0,47$ стоит сам трансформатор. Я не включил сюда компаунд для склейки сердечников, т.к. если раскидать его стоимость на всю партию, то там даже 1 цента не получается и не посчитал работу по сборке. Работа не считается по одной простой причине — трансформатор собирается на этапе ручного монтажа, а стоит он в Азии копейки. Для сравнений — напаять 2 транзистора в корпусе ТО-220 стоит столько же, сколько и монтаж планарного трансформатора, то есть опять же выходит мизер. Вот так мы и получаем цифру 0.5$ за 1 трансформатор до 100 Вт. Немного о моих результатах… Мне удалось уместиться в габарит по высоте и даже сделать лучше — вместо предельных 11 мм у меня получилось 9.6 мм. С одной стороны мало заметно, а на практике это уменьшение габаритов примерно на 13%. При чем, основной габарит по высоте задавал уже не трансформатор, а электролитические SMD конденсаторы на входе и выходе. По себестоимости — точной цифры я вам назвать не могу, но уложиться получилось в требование. Тут стоит отметить усилия самого заказчика, он умудрился найти поставщиков, которые на большой серии смогли дать цены на уровне, а иногда и чуть ниже, чем на digikey. Лично моя заслуга — я решил техническую задачу и сделал дешево, а заказчик сам уже сделал супер-дешево без потери качества. Технические возможности, открываемые планарным трансформатором Дальше моя статья принимает больше технический характер, чем повествовательный и если вам не интересна силовая электроника, сухие расчеты и прочие гадости, то дальше можете не читать и переходить к обсуждениям в комментарии. Красивых картинок больше не будет. Если же вы планируете взять данную технологию для себя на вооружение, то тогда для вас все только начинается. Планарные трансформаторы, за счет своих физических и конструктивных свойств, позволяют нам получить не только выигрыш в плане технологичности, а соответственно и себестоимости, но и открываю нам новые горизонты при проектировании. Давайте рассмотри основные плюсы, которые мы получаем при использовании планарных трансформаторов: Низкое тепловое сопротивление. Оно обусловлено более высоким отношением площади поверхности сердечника к его объему. За счет этого охлаждающая способность планарных трансформаторов ощутимо выше по сравнению с «классическими» трансформаторами на 50-70%. Это позволяет нам при проектирование закладывать большую плотность тока, а значит и обеспечить более высокую плотность энергии при том же эффективном объеме сердечника (Ve). При этом рост температуры остается в допустимых пределах Высокая плотность тока. Повышенная плотность тока является следствием предыдущего «плюса» планарного трансформатора. Обычно для трансформатора с проволочной обмоткой стандартным значением плотности тока является цифра около 6-7-8 А/мм2, когда для планарного трансформатора это цифра около 15-25А/мм2. Это разумеется при прочих равных условиях, таких как температура перегрева Отличная повторяемость паразитных параметров. Геометрия печатных плат при производстве выдерживается очень точно, что обеспечивает практически идеальную повторяемость паразитных параметров. Это позволяет достаточно легко проектировать резонансные преобразователи, например, LLC полумост и достигать очень высоких частот коммутации до 2-4 МГц Высокий коэффициент связи. Тут все просто — меньшие потери в обмотках, а значит более высокий КПД преобразователя мы получаем Малая индуктивность рассеяния. За счет этого амплитуда выбросов ЭДС и колебаний напряжения ниже, что в свою очередь повышает надежность транзисторов Очень высокая плотность энергии. Обусловлено совокупностью всех ранее описанных свойств планарного трансформатора. Чтобы вы могли более наглядно оценить весь потенциал данного типа трансформаторов, могу сказать, что в данном проекте, на одной паре сердечников ELP18/4/10 мне удалось построить резонансный преобразователь мощностью 65 Вт. А теперь посмотрите на его габаритные размеры, не плохо же для такой мелочи? Метод расчета планарного трансформатора Методик, которые позволяют рассчитать данный тип трансформаторов, достаточно много. Правда основная литература, в том числе и научная, в основном на английском, немецком и китайском языках. Я на практике опробовал несколько, все они были взяты из англоязычных источников и все показали приемлемый результат. В процессе работы за несколько лет мною были сделаны небольшие правки, которые позволили несколько повысить точность расчетов и именно эту методику я вам и продемонстрирую. У меня нет каких либо амбиций на ее уникальность, а так же я не гарантирую, что ее результаты достаточно точны во всех диапазонах частот и мощностей. Поэтому если вы планируете использовать в работе, то будьте аккуратны и всегда следите за адекватностью результатов. Немного о моделировании… Его можно, а иногда и нужно делать, но работая даже с таким монстром как Comsol, мне не удавалось получить точность выше, чем дают обычные везде описанные методики. Пытался я учитывать и большее количество паразитных параметров, и более точно описывать скин-эффект, и учитывать магнитные изменения в материале сердечника и много чего еще — точности лучше +-3-5% получать не удавалось. Поэтому на мощностях до 150-200 Вт в моделирования смысла не вижу (вы можете конечно не согласиться), а вот после 200 Вт уже без него не обойтись, особенно если у вас резонансный преобразователь. Расчет планарного трансформатора При расчете любого трансформатора первым делом необходимо найти максимальное значение магнитной индукции. Потери в сердечнике и в медных проводниках приводят к нагреву трансформатора, поэтому расчеты необходимо вести относительно максимального допустимого перегрева трансформатора. Последний выбирается исходя из условий эксплуатации и требований, предъявляемых к устройству. Делам эмпирическое допущение в котором предполагаем, что половина от общих потерь на трансформаторе — это потери в сердечнике. Исходя из этого допущения посчитаем максимальную плотность потерь в сердечнике по эмпирической формуле: Где значение эффективного магнитного объема VE берется из документации на сердечник в [см3], значение максимального перегрева ΔT выбирается исходя из расчетов (например, я обычно беру в расчет 50-60 градусов). Размерность же получаемой величины — [мВт/см3]. Прошу обратить внимание, что многие формулы, которые я описываю, получены эмпирическим путем. Другие же записаны в их конечном виде без расписывания их математического вывода. Тем, кому интересно происхождение последних советую просто ознакомить с зарубежной литературой по магнитным материалам, например, есть стать и книги у Epcos и Ferroxcube. Теперь, зная максимальную плотность потерь в сердечнике, мы можем посчитать максимальное значение индуктивности при котором не будет превышена температура перегрева выше расчетной. Где СM, СT, x, y — параметры полученные эмпирическим путем методом аппроксимации кривой потерь, а f — частота преобразования. Получить их можно двумя путями: обработав данные (графики) из документации на свой сердечник или же построив эти графики самостоятельно. Последний способ позволит вам получить более точные данные, но потребуется наличие полноценного тепловизора. В качестве примера я поделюсь с вами данными значениями для сердечников из материала Epcos N49, его аналог от Ferrocube является так же популярный и доступный материал 3F3. Оба материала позволяют без проблем строить преобразователи с резонансной частотой до 1 МГц включительно. Так же стоит отметить, что данные параметры зависят от частоты, данные цифры для частот 400-600 кГц. Это наиболее популярный диапазон частот и материал, который я использую. СM = 4,1 * 10-5 СT = 1,08 * 10-2 x = 1,96 y = 2,27 Далее стоит вспомнить о второй составляющей потерь в трансформаторе — потери в медной обмотке. Считаются они легко, по нашему любимому закону Ома в котором дополнительно учли вполне логичные моменты: ток у нас импульсный и протекает он не 100% времени, то есть коэффициент заполнения. Рассказывать как посчитать сопротивление обмотки меди по ее геометрии я не буду, слишком банально, а общую формулу наверное напомню: Потери в меди считаются для каждой обмотки отдельно, а потом складываются. Теперь мы знаем потери в каждом слое «пирога» и в сердечнике. Желающие могут промоделировать перегрев трансформатора, например, в Comsol или Solidworks Flow Simulation. Продолжая тему медных проводников, давайте вспомним о таком явление, как скин-эффект. Если объяснять «на пальцах», то это эффект, когда с ростом частоты протекающего в проводнике тока, происходит «выдавливание» тока из проводника (от центра к поверхности) другим током — вихревым. Если же говорить более по научному, то в результате протекания в проводнике переменного тока, наводится переменная индукция, которая в свою очередь вызывает вихревые токи. Это вихревые токи имеют направление противоположное нашему основному току и получается, что они взаимовычитаются и в центре проводника суммарный ток равен нулю. Логика простая — чем выше частота протекаемого тока, тем больше сказывается скин-эффект и тем ниже эффективное сечение проводника. Уменьшить его влияние можно путем оптимизации геометрии обмоток, их распараллеливания и прочими методами, которые наверное заслуживают если не целой книги, то большой отдельной статьи. Для наших же расчетов достаточно примерно оценить влияние скин-эффекта с помощью еще одной эмпирической формулы: Где ∆δ — толщина зоны с нулевым током, f — частота преобразователя в [кГц]. Как видите данный эффект целиком привязан к частоте коммутации. А теперь давайте посчитаем сколько витков и прочего нам потребуется для изготовление трансформатора прямого хода. Первым делом считаем сколько же нам потребуется витков в первичной обмотки: Где Umin — минимальное входное напряжение, D — рабочий цикл, f — частота работы, Ae — эффективное сечение сердечника. Теперь считаем количество витков для вторично обмотки: Где N1 — количество витков в первичной обмотке, D — рабочий цикл, Uout — номинальное выходное напряжение, Umin — минимальное входное напряжение. Следующим шагом является расчет индуктивности первичной обмотки. Так как ток в обмотке у нас носит импульсную характеристику, то зависеть он будет и от индуктивности. Рассчитываем мы ее по следующей формуле: Где μ0 — эффективная магнитная проницаемость, μa — амплитудная магнитная проницаемость, Ae — эффективное сечение сердечника, N1 — количество витков в первичной обмотке, Ie — эффективная длина пути. Недостающие параметры, типа проницаемости и длины магнитной линии вы можете взять в документации на конкретный сердечник. Теперь финальный шаг, который нам необходимо сделать — рассчитать действующий в первичной обмотке ток. Это позволит в дальнейшем посчитать сечение для первичной обмотки и соответственно ширину проводника. Значение тока складывается из двух составляющих и выглядит следующим образом: Тут вроде уже все составляющие формулы знакомы и посчитаны, единственное отмечу параметр Pmax. Это не просто значение номинальной выходной мощности, это полная мощность преобразователя с учетом КПД хотя бы примерно (я обычно закладываю 95-97% для резонансных преобразователей) и тем запасом, который вы закладываете в устройство. В моих устройства обычно 10% запас по мощности, в особо ответственных устройствах и узлах иногда приходится закладывать 20-25% запас, но это вызывает удорожание. Вот мы и получили все параметры, которые необходимы для расчета и проектирования планарного трансформатора. Конечно вам придется самим посчитать сечение для обмоток, но это элементарная арифметика, которой я не хочу загромождать статью. Все же остальное уже посчитано и остается только спроектировать платы в каком либо САПР. Итог Надеюсь моя статья поможет начать вам использовать планарные трансформаторы как в своих домашних проектах, так и в коммерческих. Данную технологию необходимо использовать аккуратно, ведь в зависимости от задачи она может оказаться дороже «классических» трансформаторов. Так же несомненно применение планарных трансформаторов открывает новые технические возможности, а современные Mosfet-ы и новые GaN транзисторы лишь способствуют этому, позволяя создавать преобразователи с частотами от 400 кГц и выше. Однако и стоимость этих «возможностей» не всегда достаточно низкая, да и для проектирование резонансных преобразователей на таких частотах требует большого набора знаний и опыта. Но не стоит расстраиваться! Любому из вас, даже начинающему электронщику, под силам собрать топологии по проще, например, ZVS мост (Full bridge). Данная топология позволяет получит очень высокий КПД и не требует каких-то супер-секретных знаний. Необходимо лишь сделать прототип или макет и хорошенько поэксперементировать. Удачи в освоение новых горизонтов!

Скачивание файлов доступно только зарегистрированным пользователям